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Simulating Cities as Fractal
Picturescapes

Suppose I want to understand the 'structure' of something. Just what exactly does
this mean? It means, of course, that I want to make a simple picture of it, which
lets me grasp it as a whole. And it means, too, that as far as possible, I want to
paint this picture out of as few elements as possible. The fewer the elements there
are, the richer the relationships between them, and the more of the picture lies in
the 'structure' of these relationships. (Alexander, 1979, p. 34.)

3.1 The Quest for Visual Realism

The new geometry finds its most obvious expression in the natural world
with examples of fractals all around us. Yet as Mandelbrot (1982) himself
has argued, fractals are equally applicable to systems other than those por
trayed in nature. Any system in which the whole is compos~4. of parts
arranged hierarchically in some self-similar order is fractal, and in fact, the
most serious candidates may ultimately turn out to be artificial systems
ranging from silicon chips to business organizations. Man-made structures
such as cities, we will argue, display all the characteristics we have associ
ated so far with fractals. In this spirit then, this chapter pursues two goals.
First, we will begin to establish the applicability of fractal methods for
describing and modeling cities in terms of the way their form reflects their
function, although this will also be our longer term goal throughout sub
sequent chapters. A second and more immediate goal is to illustrate how
fractal geometry combined with state-of-the-art computer graphics, can be
used to produce highly realistic but minimalist pictures as Alexander (1979)
implies above, pictures which have more than just superficial meaning
when applied to city systems.

In a sense, we anticipated this at the end of the previous chapter. But to
make real progress, we need to relax our approach to fractals which so far
has been mainly based on strictly self-similar forms, completely and pre
cisely determined by their initiators and generating rules. The fractals of
Chapter 2 are hardly natural in any case, although as artifacts, they are
products of our mathematical imagination, notwithstanding their
occasional resemblance to real physical systems. To make progress here
therefore, we need to consider fractals whose self-similarity across a range
of scales can be described by statistics of randomly distributed variables
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through various forms of deviation or variance around the mean. These we
will refer to as 'statistical or random' fractals whose form can be self-similar
or self-affine but only in terms of averages measured across several scales.

Statistical fractals are obviously necessary if we are to generate realistic
natural scenes where randomness of form exists within well-articulated
structure. The convergence of fractals and computer graphics is important
too and we will start our discussion of realism with a little of its history.
It is widely recognized that fractal geometry would not have established
itself so firmly in so many sciences without the use of computer graphics
in generating pictures. Mandelbrot (1983) describes how the mathematics
of deterministic fractals remained largely inaccessible to generations of
mathematicians because there was no way of illustrating its import in less
esoteric and abstract terms. In fact it was Mandelbrot (1975) who first used
computer graphics to illustrate ideas about the modeling of natural terrain
using Brownian motion. His ideas in this realm were first formed when he
noted the coincidence of the frequency distribution of random coin tossing
illustrated in Feller's (1950) famous book on probability with typical cross
sections of terrain.

These early graphics were picked up quickly by a number of researchers.
Carpenter (1980) used the ideas to generate computer graphic backcloths
for flight simulators while Goodchild (1980) showed how these models
might represent real terrain. Smith (1982) showed how they were used in
the movie Star Trek II to generate a living planet, and Fournier, Fussell and
Carpenter (1982) generalized this usage further, producing various types
of fictional terrain. However, the pictures which accompanied Mandelbrot's
(1983) second English edition of his book The Fractal Geometry of Nature,
particularly those by his colleague Voss (1985), have gained the greatest
recognition and have done most to popularize the subject. Stunning pic
tures of fractal mountainscapes at different fractal dimensions and their
aggregation to the terrain and seas of planet-like worlds have been pro
duced. Most recently, these landscapes such as those generated by Mus
grave and his .colleagues (Musgrave, Kolb and Mace, 1989; Mandelbrot,
1990) have become so realistic that they are hard to tell apart from natural
scenes. This suggests that geomorphic and geologic processes of weathering
and erosion are bound to generate fractal forms, thus giving further weight
to the long-standing notion that 'form follows function'. Moreover, Mandel
brot's (1982) view that ". .. the basic proof of a stochastic model of nature
is in the seeing: numerical comparisons must come second" has gained
much credence through such demonstrations.

There have been other powerful demonstrations of fractal geometry using
computer graphics and these have revolved around the idea of illustrating
the fractal structure of mathematical space. Although this book is not con
cerned with these types of fractal, much of the glamour of the subject and
not a little of its appeal has come from these geometries. In essence, the
geometry of mathematical space is usually geometry which shows the
properties of the mathematics involved, particularly the solutions to equa
tions. For example, consider the iterative equation Zt+l = z'f + c which is the
discrete equation for the logistic growth of a variable z such as population.
Then if we consider that the solutions to such equations are complex num
bers in that they have real and imaginary parts, and if we plot these on
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x-y coordinates when 2 converges to a finite value, then the geometry of
the solution is fractal in the following sense. If we start with c =0, then the
resulting solutions with different starting values for 20 based on complex
numbers, form what are called 'Julia sets', while the map of real and
imaginary values which we get when we start with c as a complex number
and 20 = 0, define the 'Mandelbrot set'. When we plot both types of set
and color the map systematically, the boundaries between solutions to the
equations and the areas where the 2 t values diverge towards infinity are
fractal; as we zoom in on these boundaries, detail is magnified and shows
the same form, however deep we zoom. These are remarkable results from
such simple equations whose form can only be revealed directly through
the power of computer graphics.

These sets have been beautifully rendered by Peitgen's group from Bre
men (Peitgen and Richter, 1986) but on a more fundamental level, formal
relationships between mathematical and physical fractals are being pursued
through the idea of fractal attractors. We came across this idea in Chapter
2 when we summarized Barnsley's (1988) work. In essence, what can now
be shown is that fractals in mathematical space such as Julia sets can be
transformed into fractals in physical space. For example, it is easy, using
changes in the transformation rules, to show how the Koch island can
emerge from the Julia set and vice versa, the Koch island and the Julia set
both being attractors in two dimensions. Finally, perhaps with an even
greater sense of mystery, the solutions to many chaotic systems have been
shown to have an underlying order which is fractal; and the visualization
of chaotic solutions has again only been made possible through recent
advances in computer graphics (Devaney, 1990).

Computer graphics is fast becoming a new medium for simulation
throughout the sciences as well as in the arts and design. Clearly through
the desire to simulate the 'fictional realism' of scenes which look realistic
but are figments of the designer's imagination, there come useful ways of
rendering backcloths in movies and the graphic arts. But the use of graphics
to see what has not been seen before, to explore the whole question of scale
and limits, and to render scientific predictions in ways in which the data
have not been visualized hitherto, are central to the way fractals have been
pioneered and are applicable. This is especially true in fields where data
are extensive and have hitherto not been easy to visualize, and it is nowhere
more appropriate than in the spatial sciences such as those dealing with
both natural and artificial, physical and social systems, especially with
urban phenomena in the form of cities, our focus here.

Mathematical models of city systems implemented on computers were
first developed 30 years or more ago, but the theories of spatial organization
and location used therein originated in economic theory from the early 19th
century onwards. The typical urban models proposed so far have thus con
centrated upon the location of and interaction between economic activities
such as employment, population and transportation at the macro-spatial
level where cities are divided into large zones such as census tracts (Batty,
1976) or at the micro-level of the individual or firm (Anas, 1982). Models
which take the level of analysis down to the physical form of the city or
to the relationship between urban activities, land uses and their physical
form have rarely been developed. This is possibly because it is the activity
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level which is the most appropriate for simulation, for it is here that econ
omic theory can be brought to bear on model design, and thus there is the
implicit view that the translation of spatial activity into physical land use
is a fairly trivial task or at least, does not matter. It is more likely that the
dearth of modeling the physical configuration of land use per se is largely
due to unconscious neglect by those who have found it easier to begin with
activity simulation and whose disciplinary biases have constrained their
interest in the physical form of cities.

However, a major problem has begun to emerge in conventional urban
modeling which relates to the meaning of spatial data and predictions. For
a long time it has been known that when model outputs in terms of activi
ties are mapped spatially in aggregate zones or as individual point patterns,
their form often looks 'wrong' in some indefinable physical sense. Excep
tionally good fits in terms of numerical indicators can be obtained, and
such models may manifest robust and causally acceptable structures, but
when their predictions are mapped, the whole does not seem to add up to
the sum of the parts; systematic biases appear and the patterns often look
physically imbalanced. In macro-modeling, such biases can often be cor
rected, or at least there are strategies which enable under- and over-predic
tion to be handled consistently, but with models based on individual dis
crete predictions, these problems are rarely addressed because the outputs
are hardly ever mapped spatially. There are thus few checks on whether
or not such models generate spatially acceptable predictions. In short, what
ever type of model is used, their data and predictions have been difficult
to assess spatially for computer graphics in this field is in its infancy.

This problem of visualizing spatial data and urban model predictions has
only just begun to be tackled in terms of the development of appropriate
computer graphics. It is already clear that a school of thought is fast emerg
ing that the ultimate test of any model is that 'it must look right'. In one
sense, this school represents a 'back-to-basics' movement which is not only
borne of a dissatisfaction with the structure and focus of contemporary
models. It is also based on the fact that as powerful computers are now
available which make graphics easy to employ, visual reality would seem
to be more important than statistical reality. In this, any models which
attempt some physical simulation are likely to produce more reasonable
looking spatial patterns than those which are higWy abstracted as points
and networks. In fact, in this chapter we will show some examples of urban
simulations which look distinctly 'uncity-like', thus demonstrating both the
power and limits of simulation and the potential of fractal geometry as an
organizing mechanism for such simulation. In one sense, although this
entire chapter will be focussed on simulating 'right-looking' cities, it will
also show how limited our best known theories and models of urban struc
ture are in simulating the physical structure of land uses and urban activi
ties. Before we can do this, however, we need to continue to relax fractal
geometry by presenting the statistical view.
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3.2 Randomness and Self-Similarity

In Chapter 2, we introduced several deterministic fractals from the strictly
self-similar to self-affine but in each case, their generators produced the
same forms or attractors each time they were initiated. Thus there is no
uncertainty in the geometry of the resulting structures, and the rules for
adding, taking away, displacing and transforming the initiator always
produce a form whose ultimate attractor is unique. Such fractals however
only exist in the world of mathematics for in nature, there is always chance.
Objects may be similar but they are rarely identical, or if they are, their
identity is only to the resolution of the measuring device, and there is
always uncertainty beyond this. The fact that chance plays so dominant a
role in the natural world is underscored by theories of evolution whose
basis in selective mutation is now well established (Dawkins, 1986), while
in the physical world, the repercussions of quantum theory are still rever
berating throughout physical theory. In a less abstract realm, natural scenes
composed of terrain, vegetation and particular climatic regimes are subject
to all the physical and natural forces which enable change to take place in
the landscape. It is clear that for any circumstance, although the processes
which act as functions of form might be known, their operation is, to all
intents and purposes, beyond our ability to observe, and we must be con
tent in estimating their meaning statistically.

The intensity of the processes involved as well as the degree to which
they interact within one another are also complemented by various con
straints on the operation of the processes in question. In an urban context,
such constraints are physical and artificial, ranging from areas of land upon
which urban development is virtually impossible within given technologi
cal limits to institutional processes which constrain physical development
in diverse ways. In short, processes which form cities operate under a var
iety of constraints which distort and transform the structure in general, and
which thus have to modeled statistically. To demonstrate this we will begin
with our basic fractal model, the Koch curve which we portrayed at the
end of Chapter 2 as an idealized city form or boundary. We will begin
relaxing this strictly self-similar deterministic fractal by introducing some
elements of chance into its generation, and it is appropriate that we begin
with the curve and its form as an island shown in Figures 2.1 and 2.2
respectively. Peitgen, Jurgens and Saupe (1992) provide similar demon
strations.

To introduce the element of chance, consider the way in which the gener
ator is applied to the initiator in the traditional Koch curve which forms
each side of the island shown in Figure 3.1(a). The generator is based on
the regular midpoint displacement of the line into a line 4/3 times the
length with each of the four segments of the line being 1/4 the length of
the original line. The Koch curve is obtained by using this generator with
the same orientation each time it is applied. However, we can introduce an
element of chance by letting this orientation be chosen randomly on either
side of the line which, when applied to the island, enables the boundary
to be enhanced by adding or subtracting to obtain the new detail. The new
island is shown in Figure 3.1(b) where the orientation either side of the line
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Figure 3.1. Regular and random Koch islands with identical fractal
dimensions.

has been chosen randomly at each iteration of the generation. As Figure
3.1(b) shows, it is quite remarkable how the Koch island becomes irregular
by introducing this simple chance effect. It is much closer to a natural coast
line than the original island, although as the same number of lines with
the same length are generated on each iteration, the fractal dimensions of
each figure are the same, that is D = log (4)/log (3) == 1.262. This is perhaps
the most remarkable aspect of randomization in generating fractals, and it
not only shows that very different looking forms can have the same dimen
sion and virtually identical functions (generators), but that fractal dimen
sion says little about the orientation and overall shape of the ultimate fig
ure. We will leave the reader to ponder this further, for it is an important
issue throughout this book. However, before we leave the Koch island, we
will show how even more irregular coastlines might be generated.

The generator of the Koch curve contains three parameters which might
be manipulated or chosen randomly to form different curves, and we have
already seen one way of doing this in Chapter 2 where we altered the
midpoint and size of vertical displacement to form the Koch forest shown
in Figure 2.3 and Plate 2.2. Thus we can alter not only the height of the
displacement but also the position of the perturbation of the line given by
the two points which define its location relative to the midpoint. These
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values, called H, WI and Wz respectively, are shown in Figure 3.2(a). We
can now generate Koch islands with the values of H chosen randomly
between 0 and say, the length of the initiating line, with the offset values
WI and Wz set between 0 and 0.5. In Figure 3.2(b), we show six Koch islands
generated in this way where the three parameters are chosen randomly at
the beginning of the generation process, but with the orientation chosen
randomly at each iteration as in Figure 3.1(b).

The fractal dimensions of the resulting curves are not equal to 1.262,
and to compute these, we have used equations (2.25) and (2.26) which are
repeated here:

L(r) = N(r)r = Kr(l-D). (2.25)

N(r) and L(r) are the number of parts and the length of the line respectively
at scale r, and K is a constant of proportionality. The log transform of equ
ation (2.25) yields

log L(r) = log K + (I-D) log r, (2.26)

where (I-D) is the slope of the regression of log L(r) on log r from which
the dimension D can be derived directly. For the six islands in Figure 3.2(b)
we have calculated the perimeter L(r) over six orders of magnitude and the
estimated dimensions and the coefficients of determination associated with
these estimates are also shown in this figure. We have not yet formally
introduced regression to determine fractal dimensions, and we will post
pone further discussion of this until Chapter 5 where we will build on the
method first introduced by Richardson (1961).

In fact we will avoid such measurement until then, but from these results
it is immediately clear that as the curve becomes more irregular and in this
sense fills more of the two-dimensional space available, the fractal dimen
sion increases. The consequent interpretation is that more rugged ria-like
coastlines have higher fractal dimensions than smoother lines, and an obvi
ous interpretation is that the value of the fractal dimension has strong
implications for the underlying processes of weathering and erosion which
lead to such forms. The great appeal of the Koch curve is that its fractal
dimension of 1.262 is close to that estimated for the west coast of Britain
by Richardson (1961) and Mandelbrot (1967). This is in contrast to the coast
line of Australia with a dimension of 1.13 and of South Africa with 1.02.
Ria coastlines have higher dimensions, but these are seldom more than 1.5,
for above that value, the curve would have to considerably distorted in a
rather systematic fashion for it to avoid self-intersection which, of course,
is a physical necessity in terms of coastlines.

To illustrate the use of these ideas further in terms of generating realistic
curves, we will take a memorable shape and perturb its straightline seg
ments using degrees of perturbation which imply different fractal dimen
sions. Mainland Australia has been chosen, and it is easily described by the
upper left hand shape in Figure 3.3 which consists of 10 straightline seg
ments. Each straightline segment in itself has a dimension of I, and we can
see how close this shape is to the 'real' Australia by simulating different
degrees of ruggedness. In Figure 3.3, we show what happens as the degree
of ruggedness increases - as the fractal dimension increases in stages from
D = 1 to D = 2. We must be clear about what we are doing here. If we
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(a)

(b)

o = 1.03 (2 = 0.93

o = 1.14 (2 = 0.96

0= 1.05 (2 =0.94

0= 1.19 (2 = 0.95

o = 1.20 (2 =0.92 0 = 1.33 (2 =0.91

Figure 3.2. Random Koch islands with different fractal dimensions.
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Figure 3.3. Simulating the coastline of Australia.

measured the fractal dimension of each'Australia' in Figure 3.3, we would
get values different from those which we have shown and have used to
generate the shape. This is because our overall shape has already been fixed
or constrained, and we are just simulating irregularity about each of its
parts. Moreover, as the algorithms we use to generate such displacement
imply the operation of chance, the values shown are those used to constrain
this chance, but do not imply that the level of chance is fixed to those values
we input. Nevertheless, the simulations do give us some feel for how the
degree of irregularity increases as we increase dimension in the same way
we did for the Koch curve in Figure 3.2(b).

Up to D = 1.15 which is near the accepted dimension of mainland Aus
tralia, the simulations clearly increase the realism of the coastline, but after
this the coast becomes too rugged. By the time it reaches a ria-like level of
1.5, the only thing in common with Australia is the fact that the simulated
coast passes through the eleven points which define the initial map. D =
1.71 is the dimension of many crystals (and cities as we will see from Chap
ter 7 onwards) while the map where D = 2 is much more reminiscent of
a random walk across space. As such, Figure 3.3 provides a useful template
for assessing approximate fractal dimensions (as Figure 3.2(b) does too).
The real point of this example is not simply to show the range of irregu
larity. It is to emphasize the point that once the degree of irregularity is
chosen in terms of a fractal dimension, it is possible to simulate such curves
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using computer graphics. In fact, Figure 3.3 shows that we are able to simu
late more realistic maps of Australia than the straightline map we started
with, but the success of the simulation depends intrinsically upon this start
ing point, that is upon the initiator. For the pictures of planets, mountains
and cities we will show in this chapter, all depend upon choosing initiators
which are planet-, mountain- or city-like and upon the use of fractal render
ing to make them realistic. There are a number of similar applications where
fractals have been used to enhance cartographic detail in cases where the
shape is too complex to describe in all its available detail, but where it can
be approximated using fractal rendering (Dutton, 1981; Hill and Walker,
1982). The classic example is Australia as we have shown, and other
examples where this map has been used to illustrate similar ideas are given
in Fournier, Fussell and Carpenter (1982) and in Dell'Gcro and Ghiron
(1983).

Before we conclude our introduction to statistical fractals generated from
the occurrence of random events, we will examine the other classic fractal
of Chapter 2, the Sierpinski gasket. Consider Figure 3.4(a) and note that
the gasket can be seen as a process whereby an original equilateral triangle
is tiled with three copies of itself which cover only three-quarters of the
initiator. The number of units used to cover the shape is three and the
scaling is 1/2, in that each side of the original triangle divides into two
which form two of the sides of two new triangles. The fractal dimension
is thus D = log (3)flog (2) = 1.585. First we will relax the scaling in that
instead of choosing the midpoint of each side of the initiator which divides
the side into those of two new triangles, we let this value be chosen ran
domly as any point on the side. This generates the random gasket shown
in Figure 3.4(b) whose fractal dimension must be computed using one of
the methods such as cell counting introduced in later chapters. The dimen
sion is not important for Figure 3.4(b); this is only one step along the road
to a completely random Sierpinski gasket which we will be using as the
basis for generating terrain later in this chapter. Imagine now that our initi-

Figure 3.4. The Sierpinski gasket: (a) without, and (b) with random 'midpoint' displacement.
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ating triangle is no longer equilateral: it may take on any shape. Then
instead of constraining the subdivision of each of the triangle's sides to be
somewhere on each of these sides, let this point be chosen randomly some
where within a circle centered on the midpoints, as in Figure 3.5 which is
taken from McGuire (1991). The three new triangles distort the original
shape, and further subdivision in the same way continues the distortion.
In Figure 3.5, the shape after 10 iterations is shown where the resemblance
to terrain is clear. Of course, the Sierpinski gasket is not a particularly good
model of a mountain, although the fact that it is a triangle is perhaps close
enough for the point to be made. As we did for Australia, we can control
the degree of displacement or the fractal dimension in this case by setting
the radius of the circle in which the displacement takes place, although we
have not pursued this in any formal sense in terms of this example. The
way we have generated fractals in this and in the last chapter really
depends upon the process of defining a generator which is consistently and
persistently applied to an originating or initiating object. At this point, we
must step back a little and say something about the possibility that there
may be underlying mathematical models of fractals which will help us in

Figure 3.5. Using the random Sierpinski gasket to simulate terrain (from
McGuire, 1991).



Simulating Cities as Fractal Picturescapes 107

the quest to generate realistic objects. To this end, we will now introduce
Brownian motion, one of the central ideas of this chapter.

3.3 Fractional Brownian Motion

The search for underlying generating functions which give rise to fractal
geometries is in some sense a fruitless quest. The generating functions we
have used so far can all be specified geometrically, and as Barnsley (1988)
has so persuasively shown, a slight change in emphasis based on their treat
ment as classic transformations yields further insights into their form. In
fact, we began our introduction to fractals in Chapter 2 by implying with
Mandelbrot (1983) that a shift from continuous functions to discrete rep
resented the obvious way to deal with irregular shapes based on curves
which might be continuous everywhere but have no derivatives. Such of
course is the Koch curve and its generalization to the coastline. However,
the search for an underlying fractal model in one sense throws us back to
the very mathematics which fractal geometry has released us from. Not
quite perhaps. Although our purpose is not to develop a strict mathematical
treatment of fractals in this book, we must indicate that there exist highly
formalized models of fractal order which can be approximated by the tech
niques of continuous mathematics, in particular by infinite series such as
Fourier transforms and related functions.

Our starting point in this is 'Brownian motion' or Bm as it is sometimes
called. In 1828, the Scottish biologist Robert Brown first made known his
observations of the motion of dust particles which appeared to move at
whatever scale they were examined. In short, their motion appeared to be
fractal. We have almost provided an example of two-dimensional Brownian
motion in the last section where our simulation of the coastline of Australia
with the dimension near to 2 shows a self-intersecting curve whose lengths
and orientations are entirely random. If we were to relax the constraint that
the walk should pass through the 11 points of the Australian coastline, then
the walk would represent true Brownian motion. However, to get a better
sense of this motion, it is worth developing the analysis taking the example
of a time-varying phenomena, and then generalizing the analysis to the
cases of coastlines and terrain in the two and three dimensions of physical
space respectively. Our exposition will closely follow the way the subject
is treated in the fractal literature and in this we will closely follow Saupe
(1988, 1991) and Voss (1988).

Consider a variable V(t) which is the value of some phenomena at time
t and define the change in this variable d V as

d V = V(t1) - V(to),

where the time interval dt is also defined as

dt = t1 - to.

It is the change in the variable d V which is of major interest in that we
will assume that it is this variable which is randomly distributed; thus over
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any time period ~t, the value. of ~V would be that which is taken from a
normal or Gaussian distribution of the variable. However, because the vari
able is a fractal, it is not possible to determine any limiting value of dV/ dt
and thus the value of a V must be proportional in some way to the length
of the time interval ~t. In fact, we assume that it is the variance of the
variable called var(~V) which is directly proportional to time, that is

(3.1)

Without loss of generality we will assume that the variance (T2 can be nor
malized to 1, and thus in the following exposition, we will only include it
explicitly where it is important to do so. Thus equation (3.1) can be writ
ten as

var(~V) = ~t. (3.2)

The implication of equations (3.1) and (3.2) is that the variable ~V is thus
proportional to the square root of ~t, that is

(3.3)

This means that the scaling between ~V and ~t is one where if time changes
by four units, then the value of the variable will only increase by two. In
short, the relationship over different time scales is self-affine, not strictly
self-similar in the language of Chapter 2.

Before we generalize these equations to a wider class of Brownian
motion, we will formally examine this scaling. If we assume that the time
changes by a factor r, then the appropriate change variables can be writ
ten as

and

~t' =rt1- rto =r~t.

Now the variance of ~V' can be written as

var(aV') =~t' (T2 =r~t(T2

= r var(~V), (3.4)

from which it is clear that the value of the change variable a V' is scaled
by the square root of r, that is

(3.5)

We can now generalize this formalism to fractional Brownian motion
(£Bm) where we introduce the exponent H from which, as we will show
below, the fractal dimension D can be derived. Following equation (3.1),
the variance of ~V can now be stated as

(3.6)

where H is the Hurst exponent (named after the researcher who first used
this equation in measuring the discharge rate of rivers, see Mandelbrot
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(1983», and rr2 the variance which we can normalize as 1. The variable LlV
can be written as

(3.7)

and it is easy to show that the scaling of time by r following equation (3.5)
is given as

(3.8)

Thus a change in scale of r units in time leads to a change of rH in LlV, and
it is clear that the case of pure Brownian motion is given when H = 1/2.
We will assume that H varies in the range from 0 to 1 in this particular
example. The last point we should make is that when equations (3.1) to
(3.8) apply to any and every time interval At, we say that the variable LlV
shows stationarity.

It is fairly straightforward to determine the fractal dimension of iBm. Let
us assume that the variable AV is examined over N time periods and that
for each equal time interval, At =l/N. Thus for every change in scale of
liN, the variable AV changes in proportion to (l/N)H. If we consider that
for each time interval of length liN, we place a 'box' of length liN times
(1 I N)H over the change in frequency of the variable, then we have to multi
ply this by all N boxes to get a total coverage of the change in the variable.
Formally, we have the change in AV with At as

(3.9)

and as there are N time periods, the number of square 'boxes' of size (1/N)2
called N(At) is given as

N(At) =~V =N2-H
At

(3.10)

Now from equation (2.17) which counts the number of equal elements
which approximate a fractal line, it is clear that the number of segments is

(3.11)

A comparison of equations (3.10) and (3.11) shows that the exponent in
both must be equal; that is

(3.12)

from which it is clear that D = 2 - H. We can now write our equations of
fractional Brownian motion given above in (3.6) and (3.7) as

var(AV) = At2Hrr2 = Llt4- 2Drr2,

LlV ex: AtHrr =At2- Drr.

(3.13)

(3.14)

To complete this section, we need to clarify the meaning of different
values of the Hurst exponent H and the fractal dimension. Clearly for the
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case of pure Brownian motion, H = 1/2 and thus D = 1.5 and in one sense,
this represents the baseline. In the case where H = 1, then D also equals 1
and this represents a completely smooth function. The change in ~V is
simply a function of time as equation (3.14) indicates. When H = 0, then D
= 2, and this means that at whatever scale the variation in the function is
examined, the motion or change is the same. This is characteristic of very
spiky-looking functions which 'fill the space available'. We will generalize
these ideas to landscapes in the next two sections, but it is worth anticipat
ing what the values of Hand D are with respect to terrain. Smoothly vary
ing terrain has both fractal and Hurst dimensions equal to 1, while at the
other extreme, very rugged and cavernous terrain has a D near to 2 and a
Hurst exponent near to o. In the next section we will show how these ideas
can be developed for simulating landscapes, but if readers wish a more
complete exposition, then the chapters by Voss (1988) and by Saupe (1988,
1991) are worth reading as are the relevant sections in Mandelbrot (1983).

3.4 Fractal Planetscapes and Terrain

The equations describing the variance properties of fBm given in (3.1) to
(3.14) above only illustrate the properties of these processes and give little
insight into the way they might be computed. In fact for pure Brownian
motion in the plane this is straightforward and it can be implemented as
follows. Defining the variable V(t) now as the total distance traveled so far
by a point tracing out a random walk in the plane, we define appropriate
units of time; in each equal time interval, we select a pair of x-y coordinates
in the plane by drawing random numbers from a Gaussian distribution,
appropriately normalized to represent the physical distance-scale proper
ties of the problem. A change in the distance ~T(Xn+lI Yn+l) can then be com
puted from (u2 + V2

)1/2 where u = Xn+1 - Xn and v = Yn+l - Yn- The total
distance traveled at time tn+1 is

(3.15)

where n + 1 acts both as an index of time and space. A plot of such motion
is shown in Figure 3.6, while a graph of the change in distance at each time
step ~T(Xn+lt Yn+l) and the total distance traveled T(Xn+lt Yn+l) from equation
(3.15) is drawn in Figure 3.7. It is clear from these figures that the motion
is Brownian, and in particular that changes in the total distance traveled
over an arbitrarily chosen time period are proportional in some way to the
length of that time period. Detailed measurement of the variation in this
function indicates that it is consistent with equations (3.1) and (3.2).

These ideas can easily be generalized to a system with any number of
dimensions for fBm in terms of equations (3.13) and (3.14), but their appli
cation is somewhat more difficult. There are two broad classes of algorithm
which can be used in their implementation, and before we present the orig
inal and perhaps most consistent method, we will outline these. The first
class of methods is based on recursive algorithms, in that its application
involves ever more detailed approximation to the limiting fractal function
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Figure 3.6. Pure Brownian motion in the plane.

Figure 3.7. Profiles of pure Brownian motion.
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and the process of approximation involves algorithms which are iteratively
applied at each scale of resolution. In contrast, the second class involves
fixed resolution algorithms which approximate the function at a prespecified
level of detail and thus have to be computed afresh if different levels of
detail apply. The computational properties of these algorithms are such that
the recursive methods are usually more efficient and enable computation
to stop on the basis of what has been computed so far, whereas the second
class requires complete computation before the appropriateness of its appli
cation can be evaluated.

The best known recursive method is midpoint displacement of the variety
we have been using so far in this book and which is best illustrated by the
generation of the Koch curve. There are several variants on this process.
These involve adding noise and variation after the computation has taken
place at each level of resolution in order to resolve the key problem with
such methods that the functions generated are not stationary. The second
recursive method is more involved although the functions it generates are
stationary. This is the random cuts method which is based on the idea of
increasing the scale of resolution by taking random cuts across the function,
computing its displacement randomly to meet the variance constraints, and
continuing this process until a fixed number of cuts are generated. Because
the cuts are randomly positioned, it is not possible to ensure that a level
of detail is reached by a particular iteration, although the resolution does
increase as the method proceeds.

Fixed resolution methods depend upon approximating £Bm at a prespeci
fied level of resolution, and these methods are in general based upon
approximating the function using various forms of series. The most well
known are based on Fourier transforms, although the general problem with
these methods is that they tend to be periodic, in that the functions repeat
themselves on a cycle of 2'TT. Such problems have been dealt with by keep
ing the transformations well-within the period range, although in general,
a major problem remains in that such functions generate intensive demands
for computation time. There are also a variety of new methods based on
modified midpoint displacement outlined by Mandelbrot (1988), some of
which have been implemented by Musgrave, Kolb and Mace (1989). In the
sequel, we will not use the fixed resolution methods because the recursive
methods are deemed more appropriate for the exploratory ideas developed
here. However, there remains the challenge not only to develop new and
better methods, but also to provide more definitive comparisons. Useful
surveys of the methods and their algorithms are presented by Voss (1988)
and Saupe (1988, 1991).

We will begin by outlining how the random cuts method has been
applied while in the next section we will deal with midpoint displacement.
As indicated earlier, the random cuts method produces functions which
exhibit stationarity in their variances. Generalizing £Bm to three-dimen
sional space, for any two-dimensional measure of distance Tuv computed as
(u2 + V2)1/2, the variance must satisfy

([z(x+u, y+v) - z(x, y)F) = (Tuv?H(J"2, (3.16)

where z(x, y) is the elevation of the terrain at coordinate x,y. In this case
we can also assume that (J"2 is normalized to unity. The major change when
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one moves from two to three dimensions, from functions in the plane to
those in the volume, is that the fractal dimension is now given as D = 3 
H. Note also that the intersection of a plane with the fBm surface yields a
profile with a fractal dimension of D = 2 - H, and these results can be
easily generalized. In the context of terrain, this implies that if the fractal
dimension of a coastline is determined, then the dimension of its relevant
surface is D + I, while if the dimension of the surface is calculated, then
the dimension of the plane which cuts the surface as a coastline is D - 1.
This can provide a cross check in the computation of such dimensions.

The best way to illustrate the idea of the random cuts method is to con
sider displacement on a sphere or a circle. On the circle, a randomly chosen
line which intersects the circle in two places is chosen, and a displacement
consistent with the fractal dimension adopted is made. Another cutting line
is then chosen which is independent of the first line, a displacement of
appropriate proportions is made and so on. This process continues until a
level of accuracy required is reached, but unlike midpoint displacement,
this is not known in advance. The process stops when all points defining
the circle reach the appropriate level of resolution, but it is likely that more
than half of these points will be at a level of detail greater than that specified
in the stopping rule. This method was originally used by Voss (1985) for
pure Brownian motion, for H = 1/2, although in later applications, the
method has been generalized to fBm.

The method is beautifully illustrated by Voss's (1985) construction of
Mandelbrot's famous planetscape Planetrise over Labelgraph Hill which is
reproduced on the back cover of Mandelbrot's (1983) book. In another con
text, we illustrate a much simplified reduction of this in Plate 3.1 (see color
section). The method clearly demonstrates how the original sphere is cut
and then projected onto the flat plane. This picture was based on the ran
dom cuts method simulating pure Brownian motion, but since then, various
renditions of similar planetscapes have been made using a modified form
of the method consistent with H ¥- 1/2. Voss (1985) and Mandelbrot (1983)
both imply that by zooming in on the planet, it is possible to generate
mountain and valley landscapes for the fact that the displacement is based
on a sphere means that three-dimensional terrain is actually being simu
lated. Voss has also produced the terrain for this application, and these too
are illustrated in Mandelbrot's (1983) book.

Before looking at these pictures, it is worth noting that little work has
been done on calculating the actual fractal dimensions of terrain. This has
not yet caught the interest of those concerned with computer graphic simul
ations, although there has been a good deal of discussion concerning ways
to increase the realism of such scenes by varying such dimensions. An
exception to this is in the work of Goodchild (1980) who has generated
several hypothetical fBm terrains using the cutting plane method and who
has explored their geomorphologic properties. Goodchild's hypothetical
terrains are shown in Figure 3.8 where it is immediately clear that as the
fractal dimension of these scenes increases towards 3, the landscapes
become a jumble of spikes like stalagmites and stalactites and bear little
resemblance to real surface landscapes (Goodchild, 1982; Goodchild and
Mark, 1987). In fact, it is at the lower dimensions that these landscapes look
more realistic. Mark and Aronson (1984) have fitted £Bm surfaces to 17 sets
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0=2.3

H=0.9
0=2.1

Figure 3.8. Simulated terrain with different fractal dimensions (from Goodchild and Mark,
1987).
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of digital elevation data and found that although the fractal function pro
vided rather good fits for spacing intervals less than 0.5 km with a dimen
sion of around 2.25, above this spacing there was a clear break in the slope
of the related variogram, suggesting a dimension of 2.75 for 0.5 to 5 km
spacing. Over 5 km, there was no correlation with the fractal function.

These points have been recognized by those developing simulations of
terrain. Voss (1985, 1988), for example, indicates that several of his land
scapes have been made more realistic by scaling elevations to make them
smoother through post-processing of the outputs from the cutting plane
method. Other ad hoc techniques have been used. For example, some have
varied fractal dimension directly with respect to elevation, with higher
dimensions at higher elevations. As we have indicated earlier, Musgrave,
Kolb and Mace (1989) have developed such simulations by including
hydraulic erosion and thermal weathering processes directly into such
simulations with striking effect. There is clearly much that can be done to
extend these models, but before we show how they can be applied to city
systems, we will introduce the technique of midpoint displacement which
has been used more widely than the method just described.

3.5 Simulating Brownian Motion by Midpoint
Displacement

There are several reasons why the technique of midpoint displacement,
although less consistent than the random cuts method, might be preferred.
First it allows direct control over the level of detail simulated. That is, in
advance, one has some idea of how the landscape might look and this is
important if the goal is simply realistic-looking terrain rather than terrain
which accurately reproduces some reality. It is of course easier to
implement and perhaps easier to analyze, and it relates to the ideas we
have already introduced in our study of fractals. Its basic problem is that
it does not completely produce the required stationary variances; that is,
the variances produced are stationary, but only with respect to those dis
placements that reflect the hierarchical structure of the way the function
is computed.

To illustrate the process, we will revert to our two-dimensional function
which relates the variable V(t) to time t. To fix ideas, we might think of
this as a line whose coordinates are V(t) and t and to illustrate the method,
we show this line in Figure 3.9. We will first outline the method for the
case of pure Brownian motion using equation (3.1) based on the interval
Llt = t1 - to = 1 where t1 = 1 and to = O. First we restate equation (3.1)

(3.1)

where using the unit interval, this becomes

(3.17)

We will now begin the midpoint displacement. In the first step, we choose
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Figure 3.9. Brownian motion as midpoint displacement.

the variance of V(1/2) as the midpoint 1/2 by adding a variance displace
ment .1r to half the variance of the entire original interval. The variances
([V(1/2) - V(O)]2) and ([V(1/2) - V(l)]2) are equal for one of these, then

V(1/2) - V(O) = ~ [V(l) - V(O)] + .1v (3.18)

«V(1/2) - V(0»2) =~ ([V(l) - V(O)]2) + .1r =~ (J"2

1 1
=4(J"2 + .1r =:2 (J"2.

It is easy to see that the variance in the displacement and the displacement
itself from equation (3.19) are calculated as

A2 1 2 d A 1
""1 =4(J" an ""1 =:2 a.

The second step proceeds in like manner. The variances ([V(1/4) - V(0)]2)
and ([V(3/4) - V(1)]2) are equal and taking one of these, the new displace
ment values .1~ and .12 are calculated from

V(1/4) - V(O) = ~ [V(1/2) - V(O)] + .12,

([V(1/4) - V(O)]2) =~ ([V(1/2) - V(O)]~) + .1~ =~ (J"2

1 1
= "8 (J"2 + .1~ =4(J"2.

The displacements are thus

M =~ cr and a2 =(~r<T.

(3.20)

(3.21)
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Continuing this process and noting the equality of the variance displace
ments for subdivisions of the intervals at the same level, it is easy to show
that on iteration k, the mean squared displacement or variance of the dis
placement is given as

from which the actual displacement is the square root. The logic of this
subdivision is shown in Figure 3.9 where it is clear that equations (3.18) to
(3.21) apply to all subdivisions at the appropriate level and not just those
intervals that are given above.

This method although applied in its pure form several times (Carpenter,
1980; Fournier, Fussell and Carpenter, 1982), can easily be generalized to
£Bm. We follow exactly the same steps, but note now that there is an
exponent of 2H on the time interval associated with the variance. Restating
equation (3.6)

var(LlV) = ([V(t1) - V(to)F) = (t1 - to)2Ha2,

and using the unit interval as in equation (3.17)

var(LlV) =(1 - 0)ZHa 2 =rr2
,

(3.6)

(3.22)

we follow an identical sequence to the pure case above. In the first step,

V(1/2) - V(O) = ~ [V(l) - V(O)] + all

([V(1/2) - V(O)j2) =~ ([(VI) - V(O)j2) + !lr =Gr (J"'

with the displacement calculated as

(3.23)

(3.24)

(3.26)

(3.25)

The second step proceeds in like manner. The variances ([V(1/4) - V(O)F)
and ([V(3/4) - V(1)]2) are equal and the new displacement values Ll~ and
a2 are calculated from

V(1/4) - V(O) = ~ [V(1/2) - V(O)] + a2,

([V(1/4) - V(O)]') =~ ([V(1/2) - V(O)]') + M=(~r0"

=~ (~r0" +!l~ =mm0".

A little rearrangement of equation (3.26) shows that the variance of the
displacements is
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2

~2 =~ (1- 22H- 2)
2 (22)H '

and in general

2

~2 =~ (1- 22H- 2).
k (2k)H

In Figure 3.10, we show an example of the application of midpoint displace
ment for the case of a fractal line whose details at successive levels of resol
ution have been generated using pure Brownian motion (with H = 1/2).
This illustrates how the profile for each level of resolution provides the
initiator for the generation of detail at the next level down.

3.6 Fractal Terrain Using the Midpoint
Displacement: the 'Earthrise' Sequence

We have already seen how we might generate fairly realistic terrain by
tiling the plane with triangles whose coordinates are chosen randomly but
within the logic of hierarchical midpoint displacement. The sequence of

-------
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5

3

Figure 3.10. Brownian motion computed by midpoint displacement
across several scales.
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distorting the Sierpinski gasket used by McGuire (1991) presented in Figure
3.5 illustrates a more general approach which we will use in generating
landscape and cityscape scenes in the rest of this chapter. A particularly
useful demonstration of this method is given as van Dam (1984) which
involves replacing each triangle with four, not three, copies of itself is
shown in Plate 3.3. There is however a problem in using midpoint displace
ment in that the nonstationarity of the process sometimes leads to creasing
in the landscape (or in the form of whatever object is being rendered). This
is due to the fact that at the higher and earlier levels of recursion, the points
and lines generated are not subject to any further randomization, thus
implying greater degrees of nonstationarity when compared with points
which are generated later in the recursion.

We can show this formally in terms of equations (3.17) to (3.26) which
we used in the last section to generate £Bm. First note that the variances
for the intervals [114, 0] and [3/4, 1] must be the same, that is

([V(1/4) - V(O)]2) ~ ([V(3/4) - V(l)]2) = (~r<r". (3.27)

Now if we add these two variances we would expect them to equal the
variance of the interval [1/2, 0] or [1, 0]. Equating these two variances,
we get

([V(1/2) - V(O)]2) =([V(1/4) - V(O)]2) + ([V(3/4) - V(l)]2)

which from equations (3.24) and (3.27) implies that

(1)2H (1)2H2: 0"2 = 2 4 0"2, (3.28)

which is only the case when H = 1/2, the case of pure Brownian motion.
This is the main reason why those using the midpoint displacement algor
ithm usually introduce some form of additional random generator either
during the process of iteration or after the output at the required level of
resolution has been computed. However, the use of other tessellations in the
plane can help resolve this, such as the choice of a square grid as initiator.
Mandelbrot (1988) has used nested hexagons to develop the method more
recently, although later in this chapter, we will demonstrate the importance
of choosing the correct initiator by adopting a square grid for the generation
of cityscapes.

We will use the triangular net to first show how it is possible to construct
a planetscape and then a mountainous terrain by midpoint displacement
for the case of pure Brownian motion. Our method is extremely fast and
involves very short computer programs which assume that some overall
shape of the object in question is input to the program in the first place.
In Figure 3.11, we show how a mountainous landscape can be generated
by inputting the basic structure of the landscape in terms of its overall form.
In this case, the inputs are large overlapping triangles which are then used
in the rendering of fractal detail. Each triangle is rendered separately using
the type of triangle displacement shown .in Figure 3.11. The colors of the
scene are chosen so that the nearer the top of each mountain, the more
likely the mountain is to be snow-covered. The technique we use examines
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Figure 3.11. Simulating an Alpine scene using triangular midpoint displacement.

each of the most detailed triangles generated, computes the distance from
its centroid to the top of the relevant mountain and then chooses the color
randomly but within the limits imposed by the value of this distance. The
effect of creasing, however, is quite clear in this picture although this can
clearly be used to advantage in that real mountainous terrain often shows
this type of creasing due to differences in underlying geological structure.

We have used the same method to copy the Mandelbrot-Voss planetrise
picture shown earlier in Plate 3.1. In this case, we use a solid blue circle
on which a triangular continental land mass is placed. This land mass is
then rendered using triangular midpoint displacement. The colors are
chosen in the same way as those determined in the Alpine scene in Plate
3.2. The centroid of the basic land mass is computed and the further away
the centroid of each individual triangle at the most detailed level is, the
more likely the triangle is to be colored green, the less likely to be colored
yellow. This generates reasonably realistic continental land masses. At the
same time, islands are spawned from this, for the choice of color is also
extended to the generation of blue sea in the peripheral areas of the land
masses. However, our pictures are very much in the spirit of Voss's (1985)
fractal forgeries in that to generate the planet in the plane, we let the conti
nents overlap the edge of the circle and simply clean them off once the
detail of the planet's terrain is complete. This is shown in Figure 3.12(a).-

We have also used two other elements to generate the illusion that the
picture is a true three-dimensional rendering when it is only two. Firs-t we
have constructed a lunar-like landscape by triangular displacement and
into this we have introduced some oval shaped craters. The colors chosen
for this part of the landscape - black and yellow - give high contrast to
the picture as the planet is based on blue, yellow and green, typical of the
colors of the earth seen from space. Finally we have introduced a light
source which, like the sun, is a long distance away from the planet. This
means that one side of the planet is dark. In Plate 3.3, we show the planet
and its final rendering through four stages of construction. In fact, the pic
ture is sufficiently realistic on the fourth iteration for no further rendering
to be necessary, although this is because the scene has been generated on
a small computer with a low resolution screen of the order of 320 x 256
pixels. Note that in both these pictures - the mountainscape and the planet-
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(a)

(b)

Figure 3.12. A simple planetrise: (a) construction; (b) final rendering.
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scape - only four colors were employed, but even these can still be used
to realistic effect.

Saupe (1991) says: "In order to generate a fractal, one does not have to
be an expert in some involved theory. More importantly, the complexity
of a fractal, when measured in terms of the length of the shortest computer
program that can generate it, is very small". This statement can be borne
out in the applications which are featured throughout this book, but it is
particularly pertinent to the examples of this section. To generate the
planetscape in Figure 3.12 and Plate 3.3 requires 165 statements in BASIC
with an additional 15 relating to the input data. With some optimization
of this code, this can be reduced to around 120 statements. What is so
remarkable about fractals is that their realism increases dramatically, per
haps exponentially, as their generation at lower levels proceeds. This is very
clear in Plate 3.3 where four levels of successive resolution are illustrated.
In running the programs associated with this planetscape, the emergence of
realism is almost magical as it is observed on the computer screen, although
readers must be warned that such realism is in the eye of the beholder who
is viewing the picture from a fixed human scale. What might appear
realistic would not be so if its scale where enlarged accordingly. For exam
ple, zooming in on the fourth level of recursion which demonstrates fractal
detail as in Plate 3.3 and scaling this back up to the base scale of the
observer, the detail would then look crude and unrealistic. However, if the
fractal generation were to continue to orders of magnitude well below the
resolution of the computer screen, scaling back up would give sufficient
detail to retain the realism.

3.7 Elementary Models of Urban Structure

When we come to apply these ideas to cities and urban systems generally,
we require much more elaborate models than those which lie behind the
planetscapes and terrain simulated above. These models are simplistic in
the extreme, based on common observations of how landscapes look and
even in these contexts, to increase the realism further requires models of
erosion and weathering which build on more formal ideas in geomorphol
ogy. In developing fractal geometry in city simulation, some rudimentary
theory about what activities and land uses are located where, must be used,
and this means that theories of location and urban structure which form
the basis of urban economics, transportation and human geography, are
required. In this section, we will introduce the most elementary of such
theories and use the resulting model to determine what activity or land use
is to be located in each of our zones or sites of the city, and where in turn
these sites are generated, using hierarchical triangular midpoint displace
ment.

Cities and their activities and land uses clearly manifest forms which are
self-similar as we demonstrated in Chapter 1 and loosely alluded to in
terms of fractals in Chapter 2. At higher levels of spatial aggregation, for
example at the regional level, self-similarity is directly invoked in central
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place theory (Woldenberg and Berry, 1967). The idea of modeling self-simi
larity at different scales involves finding an appropriate generating function
which can be applied to each scale in a recursive manner. A simple example
might be based on central place theory or on theories of the disposition of
neighborhoods and district centers within cities: such a rule might involve
market area, range of good, population served, the variety of services and
goods available at different hierarchical levels and so on. Such a function
would be applied first to the largest center, and then follow the rank-size
distribution through lower order centers. We are able to use any method
which subdivides the original space into regular numbers of subspaces,
quadrants, whatever, at each level of the hierarchy and the generation
would continue until the lowest order of center is reached. Clearly the
recursive rule involves locating lower and lower orders of non-overlapping
subdivision. The method we will use will begin with one or four spaces
and continually subdivide these by four at lower levels, leading to an hier
archy of locations ordered from 1 to 4, 4 to 16, 16 to 64, and in general for
any iteration k, 2k

-
1 to 2k

• We will explain the hierarchical nesting in detail
in the next section.

The hierarchy we have just alluded to might equally well be an artifact
of the method as it clearly is in the landscape examples given earlier. It
does not have to have substantive meaning at each level for it to generate
realistic scenes or locations. However, in the examples of cities, we will
attempt to give the hierarchy more substantive meaning in terms of location
theory and the perception of space at different scales. Central place theory
and neighborhood hierarchies have already been mentioned, but there are
also hierarchies of traffic routes, public and private services, firms in terms
of their spatial organization from regions to the local level and so on, as we
implied in Chapter 1. As we also noted there, treating cities as hierarchies is
somewhat controversial for a number of studies, notably that by Alexander
(1965), argue that hierarchy is too simplistic an ordering device, that activi
ties and land uses in cities are composed of overlapping areas whose order
is more lattice- than tree-like. However, this takes us to questions of the
rationale for such hierarchies, and we will postpone this until the next sec
tion.

We have already introduced the notion that appropriate models of urban
activity are to be used to predict the land use/activity type at each level
of fractal detail, thus forming a basis for rendering. In this first application,
however, we will only use such models to predict land use at the lowest
level, not at intermediate levels which would imply that the hierarchy used
in simulation has substantive meaning. Thus once a lowest branch in the
hierarchy is reached, the model is invoked to enable activity types to be
determined. Here we have assumed that there are three key urban activities
in one-to- one correspondence to land uses: these are commercial-industrial
(u = 1), residential-housing (u = 2), and open space-recreational (u = 3)
where the index u defines the particular land use-activity in question. The
model for these activities is based on a simple distance relationship to the
central business district (CBD) where the profiles of land use type imply
that different land uses dominate different concentric rings. These are the
so-called von Thunen rings which characterize the organization of land use
in strongly monocentric cities. In general these profiles are structured so



124 Fractal Cities

that commercial-industrial land uses dominate the core and inner areas of
the city, residential housing the peripheral areas of the city and the inner
suburbs, with open space more randomly configured throughout the city.
These patterns have been central to theories of urban structure and location
from urban ecology in the mid-1920s to contemporary urban economics
which began with Alonso (1964).

The general form of the model predicts a probability pU(r) which is a
function of the distance r from the CBD specific to each land use u. This
is given as

(3.29)

where au, bu and RU are parameters whose magnitude and sign control the
profile of the probability distribution with respect to distance from the CBD.
The precise forms of these equations for the simulation which will follow
can now be stated. For the commercial-industrial activity u = I, equation
(3.29) can be written

pl(r :5 400) = 1.38 - 0.0074r
!

where the probability declines inversely with distance, and is near to 0
when r = 186. When the distance is greater than 400, the probability is set
at a threshold value of

pl(r > 400) = 0.002

reflecting a minimum threshold on the existence of this activity. It is quite
clear, however, if only these equations were to be used, that there would
be a break in the profile from r =186 to r =400 where the probability would
be O. To control for this, an additional equation is also applied which is set
up as the conditional that

if pl(r) <: 0.04, then pl(r :5 400) =0.04.

The combined effect of these equations generates the commercial-industrial
profile shown in Figure 3.13. Note that the values used are arbitrary and
only of relative meaning for they reflect the coordinates for plotting on the
particular display used.

Residential land use (u = 2) is controlled by a similar set of equations
which reflect both positive and inverse distance relations. Then

p2(r :5 315) =0.20 + 0.0024 (r - 30)

and

p2(r > 315) = 0.88 - 0.0035 (r - 315).

The effect of these equations is to generate an increasing function of dis
tance from p2(0) =0.128 to a maximum of p2(315) =0.88 which then declines
to p2(516) = O. To ensure a minimum value of residential activity, the con
ditional is

if p2(r) < 0.05, then p2(r) = 0.05.

Finally for open space u = 3, the relationship is simply one of inverse dis
tance
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Figure 3.13. land use profiles and von Thunen rings in the monocentric
city.

p3(r) = 0.12 - 0.0002r

where the probability declines from p3(0) =0.12 to p3(480) = O. To ensure
that this function does not predict negative values, the conditional

if p3(r) < 0, then p3(r) = 0

is invoked. These three profiles are shown in Figure 3.13.
Examining these probabilities, it is clear that they are nowhere nor

malized to exactly sum to 1. We have done this so that when I u pU(r) < 1,
the residual probability is regarded as the probability of vacant land occur
ring. The overall probability of vacant land occurring is best seen by visu
ally aggregating the profiles in Figure 3.13 and this implies that as distance
increases away from the CBD, the probability of vacant land also increases.
The other point is that in the vicinity of the CBD, the probabilities sum to
greater than 1, that is I u pU(r) > 1. This does not constitute a problem
because the order in which the activities are considered in the simulation
means that commercial-industrial are always allocated first, then residen
tial and finally open space. This achieves the following effects.

The probability structure is first set up in the order of importance of these
activities. A range of probability is fixed for each activity as: rNo = 1, rNI ==
1000pl(r), rNz == 1000 [pl(r) + pZ(r)], and rN3 == 1000 [pl(r) + p2(r) + p3(r)]. An
activity type is allocated by drawing a random number between 1 and 1000.
H the sum of the probabilities is greater than 1, then the commercial-indus
trial land use takes priority, then the residential and finally open space. In
fact when r = 0, then rNI == 1000 x 1.38 and thus the activity will always be
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commercial-industrial at the CBD. Only when r > 50 will other activities
be 'competing' for allocation. However, when r > 550, rN3 = 6 and effec
tively all the activity will be vacant land. In essence, this marks the bound
ary of the city. These equations thus control many dimensions of urban
activity allocation and physical form. The shape of the city can be quite
radically altered by changing the parameters aU, bUand RU. The values used
were fixed by a process of trial and error simulation as well as being judged
consistent with simple urban bid-rent and population density theory which
we refer to in later chapters.

We have thus defined a simple model of urban land use location which
operates through functions which imply the importance and dominance of
each land use at different distances from the CBD. Such a monocentric
model is of course a gross simplification. It is not unlike the 'model' we
used to render the slopes of the mountainscape in the last section. Never
theless, it does provide a useful rationale for urban location and much of
the theoretical edifice of urban economics and human geography is built
upon these basic ideas. However, our focus here is not upon developing
the best model but upon using a rudimentary model of urban structure to
provide a rationale for 'coloring' the city using triangular midpoint
displacement. To this we now turn.

3.8 Fractal Cityscapes: The 'London' Sequence

As we implied above, we will now operationalize the model within the
context of triangular midpoint displacement for an urban system with the
broad dimensions of a world city such as London or Tokyo. A justification
for fractal rendering of the sites of the city at its lowest level is based both
on our casual and more formal observations that cities display such irregu
lar patterns. Such patterns are formed from individual sites and parcels
whose irregularity is conditioned by a myriad of historical, social and
physical characteristics. Such patterns are impossible to describe in detail,
and defy conventional modeling over a range of scales, although we do
know the general principles and reasons as to how and why such patterns
are formed. The patterns do in fact appear to be fractal, and thus a first
attempt in unraveling their structure can be based on fractal simulation.
This is an important point which we cannot stress too much. This chapter
is about using fractals to generate a perceived realism in which traditional
urban models might be embedded. This is a much more modest goal than
designing a complete fractal model, although our models will become more
complete as the chapters unfold.

Here we not only acknowledge that fractals are useful in identifying the
basic processes at work in cities, but that they are useful in more superficial
ways - for rendering the forms produced by traditional models, thus
making their outputs more visually acceptable. Such a goal is important in
communicating problems, plans and policies in ways in which decision
makers best understand. As we continue, our focus will begin to change
as we move towards models based on better founded urban theory, but
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we will still retain an emphasis on their visualization using state-of-the-art
computer graphics. The method we have developed begins by dividing the
urban space, which we define as a circle centered on the CBD, into 10 ident
ical triangular wedges or sectors. Each sector is then subjected in turn to
hierarchical subdivision, and once the appropriate level of fractal detail has
been reached in any sector, the simulation moves to an adjacent one and
begins afresh. The process starts with the due eastern sector and rotates in
counterclockwise fashion until all the sectors have been treated. We con
sider that the use of the triangular lattice rather than a square grid is poss
ibly more appropriate to highly polarized cities where the development has
occurred historically from the CBD to the periphery, although the lattice
used should make little difference to the simulation.

Let us first define the spatial units or zones in question. The original
circular space is subdivided into 10 sectors, each sector referred to as Zo
where e is an index reflecting the angular orientation of the sector in ques
tion. Within each sector, the zones are referred to by Zk(S) where k is the
zone in question and s is the hierarchical or recursive level. From each
branching of the hierarchy, there are K zones, k = 1,2, , K. Over the levels
of the hierarchy given by recursive levels 8 = 1, 2, , 5, particular zones
are referred to in the sequence i, j, k, ..., where i is a typical zone on the (s
- 2)th level, j is a zone on the (s - l)th, k is a zone on the 8th level and so
on. The generating rule used to subdivide zones from one level of the
hierarchy to the next is given as

(3.30)

where j is the zone being subdivided on level s - 1 and Gk is the subdivision
operator. A particular sequence of zones can now be generated in the fol
lowing way. The process is begun by applying the rule in equation (3.30)
to the original sector Zo

Zi(O) = Gi [Zo], e= 2'lT /10, 4'lT /10, ..., 2'lT, i = 1, ..., K. (3.31)

Recursion on equation (3.30) using equation (3.31) leads to the sequence

(3.32)

Because K zones are generated from each branch in the hierarchy, it is easy
to show that at the sth level down the hierarchy, there a total of Ks zones.
There is also need for a stopping rule to end the recursion.

In our case, we are subdividing space to form a triangular mesh. The
original segment Zo is divided into four triangles in the manner shown in
Figure 3.14 where K = 4. From this diagram, it is clear that at recursive
level 8 = I, there are four sectors in the original segment, at level s = 2, 16;
at 8 = 3,64, and so on. The stopping rule is based on the level of resolution
below which further spatial detail is not required. In this case, this is the
level of pixel resolution of the display (which is 320 x 256 pixels). A quick
calculation shows that with 10 sectors, when s = 6 we are below the level
of resolution of the screen, and thus in the sequel we will find that fractal
detail can be most clearly articulated at levels 8 = 4 and s = 5, not greater.
We have chosen Gk to reflect the subdivision of triangular space into four
triangles in the manner shown in Figure 3.14. This involves midpoint dis
placement of each side in a constrained random fashion, the degree of con-
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Figure 3.14. Fractal rendering of the monocentric city.

straint reflecting the degree of irregularity, hence the fractal dimension of
the resulting surface as described earlier in this chapter. The algorithm used
to effect the displacement uses simple trigonometric functions to compute
the associated coordinate pairs which define the triangular mesh. The
degree of randomness introduced is difficult to quantify in any simple way,
but it is reflected in the displacements in Figure 3.14.

The fractal simulations involve a straightforward concatenation of the
recursive generating process (in Figure 3.14 and equations (3.30) to (3.32))
with the general model structure (in Figure 3.13 and equation (3.29)). To
demonstrate the dependence of pattern and shape on the level of recursion,
we have run the model with distances and scale similar to those of Greater
London (GLe, 1985) for levels of recursion 1 ::;; s ::;; 5. This produces five
simulations which are presented in Plate 3.4 where the colors blue, red
and green represent commercial-industrial, residential, and open space
recreational land uses respectively. These show quite different patterns. Up
to level s =2, the pictures reveal the coarseness of the triangular mesh used
to generate shapes of land use activity. Moreover, not enough zones are
generated to achieve a reasonable distribution of activity types. However,
for s > 2, the pattern becomes much more acceptable; but when s > 5,
which touches the level of pixel resolution, the pattern looks more like a
pointillist painting than a city. The most appropriate-looking images are
thus generated for s =3 and s =5. This is an important point in the simul
ation of visual realism, and it also suggests that the probability structure
of the underlying model is not invariant to scale, an issue which in some
senses is obvious, but one which has rarely been explored in the main
stream of research.

These types of simulation do, however, reveal the inadequacies of con
ventional urban models in terms of their spatial patterns and visual realism.
The images shown in Figure 3.14 are too compact in that one might expect
a much greater spread of development unconnected to the main city but
indicative of the way development hops around on the edge of a large city.
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Despite the preset wedge-sector geometry which provides the template for
the city, these patterns do not display the classic corridor effects which
characterize the typical radial-eoncentric city. Compare these, especially the
images for s = 3, 4 and 5 in Plate 3.4, to those in Chapter 1 - Figures 1.15
and 1.16, and Chapter 7 - Figures 7.2 to 7.5 and Plate 7.1, which illustrate
real urban agglomerations. The advantage of fractal simulation thus
becomes clear. Spatial effects in models are immediately clarified, and sys
tematic biases can be detected and corrected. Only large-scale simulations
can achieve this, and the pictures in Plate 3.6 speak for themselves.

Finally, although the broad shape of our simulations reflect those of Lon
don, these simulations are as much 'London' as are the Mandelbrot-Voss
planetrise pictures shown earlier which are implied to be the 'Earth' as seen
from the 'Moon'. This is a very important issue in fractal graphics for in
this case, it suggests the sorts of elements required in order to generate
minimal city forms. The whole feel to the images for s ;::: 3 is that of a large
monocentric city like London. In fact, we have cheated slightly by adding
the distinctive River Thames to the images after they have been generated.
This is a strong perceptual clue to any picture but even without it, the
images for s ~ 3 reflect a large city like London. In our fully-fledged simula
tions which we will develop in the next chapter, we will in fact omit the
river for in these simulations which will actually be of London; the shape
of the city will be encoded in the input data which reflect the built-up area
and the Greater London County boundary.

The examples we have ended with in this chapter constitute a good basis
for experimentation, in terms of the mechanisms of developing cities in
physical terms, of exploring model structures through their causal chains,
and of judging visual realism. A particularly important issue is to find out
the way parameters might combine with one another to generate realistic
and unrealistic morphologies, and the 'London' sequence developed here
provides a firm basis for this. In the next chapter, we will extend our hypo
thetical model by setting up a computer laboratory to generate a variety of
experiments in visualizing urban form. This, however, will be but an initial
foray into this kind of experimentation, and as such represents a powerful
line of inquiry which we will leave for future research. We will also pro
gress our simulations forward by developing more realistic models which
we render with fractal midpoint displacement, and the emphasis will turn
to explicitly fitting these models to data. The great strength of fractal mod
els which generate picturescapes is that they provide a way of making our
theories more real and of communicating more meaning to our analyses.
For the first time we can move away from but still retain the logic of our
theoretical models which hitherto have usually been regarded as extreme
cases; with a little imagination, we can render these more realistically with
out losing the need for high theory. Fractal rendering represents a powerful
way of achieving this, and in the next chapter, we will demonstrate how
this is possible in the real as well as in the imaginary world.




